Improving data-driven prognostics by assessing predictability of features

نویسندگان

  • Kamran Javed
  • Rafael Gouriveau
  • Ryad Zemouri
  • Noureddine Zerhouni
چکیده

Within condition based maintenance (CBM), the whole aspect of prognostics is composed of various tasks from multidimensional data to remaining useful life (RUL) of the equipment. Apart from data acquisition phase, data-driven prognostics is achieved in three main steps: features extraction and selection, features prediction, and health-state classification. The main aim of this paper is to propose a way of improving existing data-driven procedure by assessing the predictability of features when selecting them. The underlying idea is that prognostics should take into account the ability of a practitioner (or its models) to perform long term predictions. A predictability measure is thereby defined and applied to temporal predictions during the learning phase, in order to reduce the set of selected features. The proposed methodology is tested on a real data set of bearings to analyze the effectiveness of the scheme. For illustration purpose, an adaptive neuro-fuzzy inference system is used as a prediction model, and classification aspect is met by the well known Fuzzy Cmeans algorithm. Both enable to perform RUL estimation and results appear to be improved by applying the proposed strategy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Features Selection Procedure for Prognostics: An Approach Based on Predictability

Prognostic aims at estimating the remaining useful life (RUL) of a degrading equipment, i.e at predicting the life time at which a component or a system will be unable to perform a desired function. This task is achieved through essential steps of data acquisition, feature extraction and selection, and prognostic modeling. This paper emphasizes on the selection phase and aims at showing that it...

متن کامل

Major Challenges in Prognostics: Study on Benchmarking Prognostics Datasets

Even though prognostics has been defined to be one of the most difficult tasks in Condition Based Maintenance (CBM), many studies have reported promising results in recent years. The nature of the prognostics problem is different from diagnostics with its own challenges. There exist two major approaches to prognostics: data-driven and physics-based models. This paper aims to present the major c...

متن کامل

Title of Document : PROGNOSTICS AND HEALTH MANAGEMENT OF ELECTRONICS BY UTILIZING ENVIRONMENTAL AND USAGE LOADS

Title of Document: PROGNOSTICS AND HEALTH MANAGEMENT OF ELECTRONICS BY UTILIZING ENVIRONMENTAL AND USAGE LOADS Nikhil M. Vichare, Doctor of Philosophy (Ph.D.), 2006 Directed By: Chair Professor and Director, Michael G. Pecht, Department of Mechanical Engineering Prognostics and health management (PHM) is a method that permits the reliability of a system to be evaluated in its actual application...

متن کامل

Data-driven Machinery Prognostics Approach using in a Predictive Maintenance Model

Nowadays, more and more manufacturers realize the importance of adopting new maintenance technologies to enable systems to achieve near-zero downtime, so machinery prognostics that enables this paradigm shift from traditional fail-and-fix maintenance to a predict-and-prevent paradigm has arose interests from researchers. Machinery prognostics which could estimate machine condition and degradati...

متن کامل

Variable selection for heavy-duty vehicle battery failure prognostics using random survival forests

Prognostics and health management is a useful tool for more flexible maintenance planning and increased system reliability. The application in this study is lead-acid battery failure prognosis for heavy-duty trucks which is important to avoid unplanned stops by the road. There are large amounts of data available, logged from trucks in operation. However, data is not closely related to battery h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011